

Ensuring Adequate Process Safety Information for Conducting PHAs

Amy E. Theis, PE AcuTech Group, Inc.

Amy E Theis, PE (she/her)

- B.S. Chemical Engineering, University of Iowa
- AcuTech, Group Inc. Central Business Unit Leader and Principal Engineer
- 25+ years in Process Safety Consulting
- PHA/HAZOP/LOPA facilitator, NFPA code compliance, PSM/RMP audits & PSM program development
- Specialty experience in reactive chemical hazards, combustible dust, flammable liquids, UN/DOT transportation of dangerous goods and emergency relief system design for reactive systems

Agenda

PSM Requirements for PSI and PHA

Common deficiencies

Special considerations

Key Takeaways

PSM Requirements for PSI: Hazards

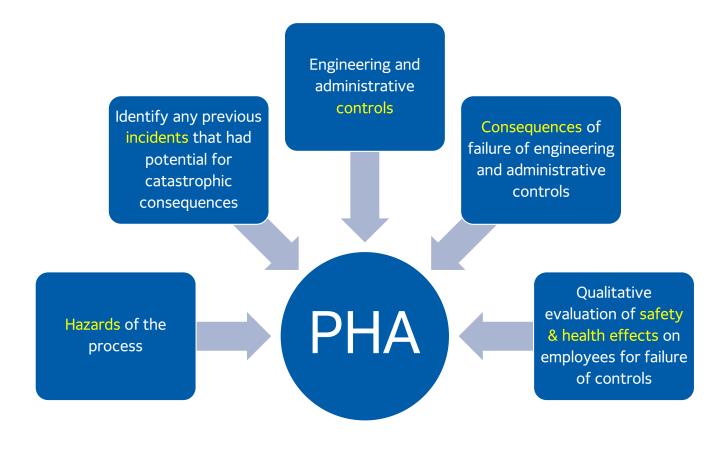
Hazards

- Toxicity
- Permissilbe exposure limits
- Physical data
- Reactivity data
- Corrosivity data
- Thermal and chemical stability data
- Hazardous effects of inadvertently mixing

PSM Requirements for PSI: Technology

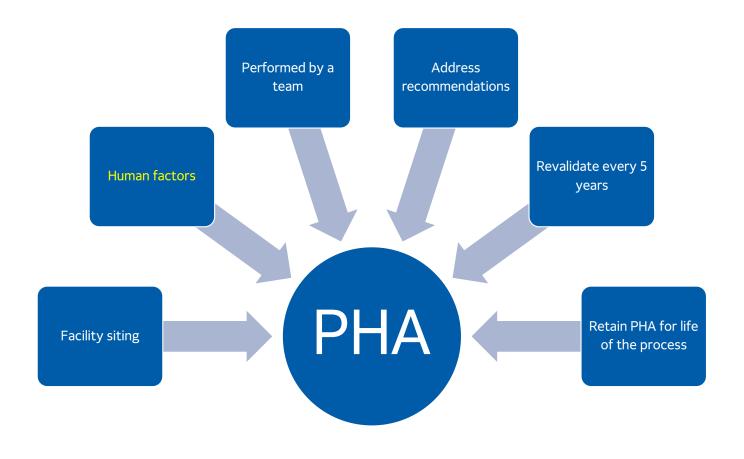
Technology

- Block flow diagram
- Process chemistry
- Maximum intended inventory
- Safe upper and lower limits for parameters such as temperature, pressure, flow or composition
- Evaluation of consequences of deviation
- Develop information as needed in conjunction with the PHA


PSM Requirements for PSI: Equipment

Equipment

- Materials of construction
- Piping & instrumentation diagrams (P&IDs)
- Electrical area classification
- Relief system design and design basis
- Ventilation system design
- Design codes and standards employed
- Material and energy balances
- Safety systems (interlocks, detection, controls)
- Evidence of RAGAGEP compliance



PSM Requirements for PHA

PSM Requirements for PHA

Common Deficiencies

PSI

- Safe operating limits
- Consequences of deviation
- Reactivity information
- Thermal & chemical stability

PHA

- Evaluate consequences with safeguards
- Omit human factors
- Omit previous incident review

PSI Best Practice Recommendations

Safe operating parameters

Flow rates/speed

Operating manuals

Documented design basis emergency vent system design

Explain each ASME overpressure scenario with justification

Summarize
hazard
information
for all
chemicals

PSI Recommended Best Practices

- Compare thermal stability to safe operating limits
 - Maximum temperature to avoid decomposition
 - Temperature of no return
 - 24-hour time to maximum rate
- Characterize chemical reactivity due to upset conditions or inadvertent mixing

Chemical Interactivity Hazards

- Chemical Reactivity Worksheet/CAMEO
- Results can be conservative
- Create for each scope
- Limited to 1:1 interactions
- Use as first pass screening

Credit: Export from AIChE Chemical Reactivity Worksheet

Develop Reactivity Scenarios

Loss of utilities

Process upset

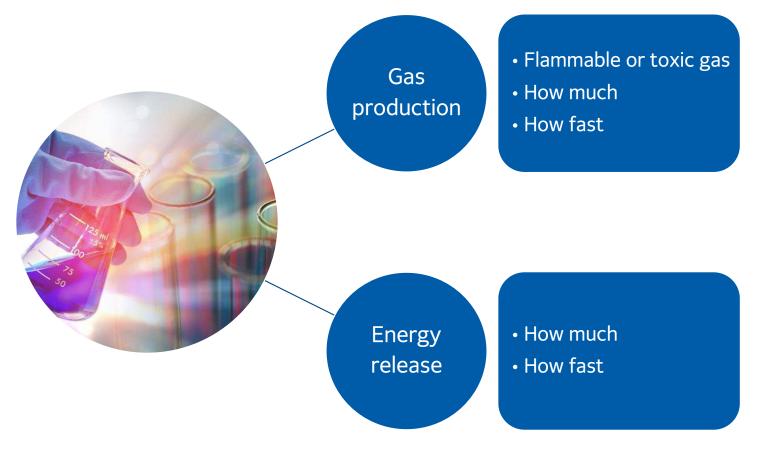
Energy input variation

Mechanical failure

Inadvertent mixing

Human error

Other



Reactive Hazards Data

- Rate and quantity of heat or gas generated
- Thermal stability of reactants, reaction mixtures, byproducts, waste streams, and products.
- Effect of variables such as charging rates, catalyst addition, and possible contaminants.
- Understand consequences of runaway reactions or toxic gas evolution.

Perform Testing to Characterize Reactivity

Testing Methodology

Screening Intended Chemistry Upset Conditions

Reaction
Calorimetry Adiabatic
Calorimetry

Evaluate Consequences

Toxic Gas Release

Flammable - Explosion

Flammable - Fire

Special Considerations

- Dryers thermal stability
- Adding powders (combustible dust) to flammable liquids
 - Batch operations with manual addition
 - Loading/unloading operations
 - Reactors
 - Storage of self-reactive chemicals
 - Extreme weather events

Combustible Dust (Powder) Data

Minimum ignition energy (MIE)

Minimum ignition temperature – cloud (MIT)

Minimum ignition temperature – layer (LIT)

Minimum explosible concentration (MEC)

Explosion severity (K_{st})

Limiting Oxygen Concentration (LOC)

Thermal stability (DSC)

Thermal Stability Testing for Drying of Powders

Spray, Tray, Flash or Ring dryer

- Air over layer
- Diffusion cell
- DSC

Fluid Bed or Rotating Drum dryer

- Aerated cell
- Diffusion cell
- DSC

Vacuum dryer

- Diffusion cell
- DSC

Process Hazard Analysis: Evaluate the Risk

- Upset scenario: Identify credible scenarios be specific
- Severity: What is the worst potential consequence
- Safeguards: Identify current preventive or mitigative measures

Human Factors

Field

Accessibility, clarity, layout

Control room

• Displays, alarms

Labeling

Clear, consistent

Procedures

Clear, consistent

Workload

Regular & emergency operations

Summary of PSI for PHAs

HEADQUARTERS

1750 Tysons Blvd, Suite 200 McLean, VA 22102 USA

EMAIL ADDRESS

atheis@acutech-consulting.com

WEBSITE

www.acutech-consulting.com